Triangle
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3]]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
使用bottom-up方法将最小值汇聚到root,将中间结果保存在开辟的空间curMin中。
class Solution {public: int minimumTotal(vector> &triangle) { int m = triangle.size(); if(m == 0) return 0; else if(m == 1) return triangle[0][0]; vector curMin = triangle[m-1]; for(int i = m-2; i >= 0; i --) { // for level i for(int j = 0; j <= i; j ++) { curMin[j] = triangle[i][j] + min(curMin[j], curMin[j+1]); } } return curMin[0]; }};